Analysis example collection-13

Magnetic field analysis using coil elements

項目	章	タイトル			
概要 1					
	1.1	モデル説明			
モデル	2	モデルのインポート			
	2.1	Masterの起動			
	2.2	ウィザードの開始			
	2.3	Nastran ファイルのインポート			
条件設定	3	条件設定と計算実行			
	3.1	材料の設定			
	3.2	励磁の設定			
	3.3	境界条件の設定			
	3.4	解析オプションの設定			
	3.5	解析データの出力			
	3.6	計算実行			
結果処理	4	結果ファイルのエキスポート			
	4.1	Femapファイルのエキスポートの場合			
	4.2	MFGUI ファイルのエキスポートの場合			
MFGUI	5	MFGUI の結果表示			
	5.1	アウトプットファイルの読込み			

目次

1 概要

コイル要素を使って、磁性体を励磁する例です。コイル要素は、有限要素とは独立して定義で きるので、メッシュ作成が非常に簡単になります。実際にこのモデルは、コイルが移動する誘導 加熱解析に利用されています

データ:example/example13-静磁場-コイル要素

磁束密度等高線

磁束密度ベクトル表示

1.1 モデルの説明

- 2 モデルのインポート
 - 2.1 Master の起動

インストール時に作成されたデスクトップ上のアイコンをクリックして Master を立ち上げて ください。

2.2 ウィザードの開始

作業ディレクトリを選択して、ウィザードに進んでください。

解析案内		_		Х
解析条件によるウィザード分岐				
解析の種類				
磁界解析 💿 静磁界	○ 交流磁界	03	定常磁	界
		U	マタート	計算
電界解析 〇 静電界	○ 静電流			
option 🗌 鉄損	鉄損ウィザードの開	抛台		
解析の次元				
			tatata	
© 3///L	0 2/7/1	_ ¥⊞⁄	111	
励磁種類				
電流 [A]	🗌 境界要素			
雷位 [1]				
□ 等価電流 [A/m]				
🗌 磁石				
	(_	مربا الاس	8847	
メイン画面に戻る	2	イザードの	開始	

今回の解析は、静磁界>3次元>コイル要素の設定になります

2.3 Nastran ファイルのインポート

メッシュデータはすでに Nastran 形式で作成されているとします(msc1.dat) このファイルをインポートします

🚺 静磁界解析ウィザード					- 🗆 X
ファイル 解析条件 ツール ヘルプ					
Step 1 モデル情報を取り込む]	設定状況
ファイルフォーマット選択 〇 Femap (*.nau) ○ GMSH (*.msh) 形状ファイル	NASTRAN (*.da Master (*.geo) msc1dat	t) O I-DEAS (*.unv) O AirCube (*.tsl)	参照		Step 1 モデル情報を取り込む Step 2 材料と励磁を決める Step 3 励磁の値を入力 Step 4 境界条件を決める Step 5 その他解析条件の設定 Step 6 設定した条件をファイル出力 Step 7 解析の実行 Step 8 実行結果をモデル出力
形状情報					モデル mu-MF 3.64 Not transient
● 節点数	12565	最大節点番号	12565		
『 # 要素数	12004	最大要素番号	12004		
🔩 プロパティ数	3	最大プロパティ番号	101		
1次元要素	4				
🍸 2次元要素	0				z v
📐 3次元要素	12000				
					表示するプロパティID all 🔍
履歴 12:50:19 PM08/24/22 == 静磁界解析り	パザード ==				xy zx yz 🙏 💺 💶 🕀
12:50:19 PM08/24/22 *** Step 1 モデ 12:51:24 PM08/24/22 形状デーク読み 12:51:26 PM08/24/22 形状データ読み 12:51:26 PM08/24/22 形状データ読み	ル情報を取り込む ** 込み開始 込み終了	*		~	<< 前に戻る (< 前に戻る) () () () () () () () () () () () () () (

※Nastran データの中でコイル要素は CBAR 要素として定義されています

	💕 C:¥E	Develop	¥muM	F¥Master	rV3.6.1¥exa	mple¥exan	nple13-静磁	な場-コイル要	ē素¥msc1.c	lat - Mery		-		×
	ファイル	/(<u>F</u>) 編	集(<u>E</u>)	検索(<u>S</u>)	表示(⊻)	マクロ(<u>M</u>)	ツール(<u>T</u>) ヴ	ウィンドウ(<u>W</u>)	ヘルプ(<u>H</u>))				
	1	7 🗐	3	አ 🗈	🛍 i 🤊 i	°° ∦ A	🛛 🧈 🕴	A 🔍 🗉	🖻 🔲	● ▶	ø 🔤			
Γ	🛋 msc	1.dat 8	3											
١Ľ		0		10	20	30		40	50	60	70		<mark>8</mark> 0	
Ш	36605	I CHEXA		11999	1	12560	12561	2301	2302	2764	2763+		4	<u>+</u> ^ .
1	36606	+		2532	2533								4	
II.	36607	CHEXA		12000	1	12561	11732	2300	2301	2763	2762+		4	
1	36608	+		2531	2532								4	
ł.	36609	CBAR		12001	101	12565	12562	0.57735	0.57735	0.57735+				
l	36610	CBAR		12002	101	12562	12563	0.57735	0.57735	0.57735+				
l	36611	CBAR		12003	101	12563	12564	0.57735	0.57735	0.57735+				
ł	36612	CBAR		12004	101	12564	12565	0.57735	0.57735	0.57735+				
	36613	ENDDA	TA↓											
	36614	[EOF]												
l														· · ·
		Text	3660	5行, 81桁	CR + L	F		UTF-8 (BOI	M無L)	CR+LF (Win	dows)			

- 3 条件設定と計算実行
 - 3.1材料の設定

プロパティを以下のようにします

3.2 励磁の設定

コイル電流値を 1000A とします

※コイル電流の向きは、要素作成時に決めています(コネクションの i からj)

3.3 境界条件の設定

3.4 解析オプションの設定

	- 🗆 X
	設定状況 ◆ Step 1 モデル/情報を取り込む ◆ Step 2 材料と励磁を決める ◆ Step 3 励磁の値を入力 ◆ Step 4 境界条件を決める ● Step 6 設定した条件をファイル出力 ● Step 7 解析の実行 ● Step 8 実行結果をモデル出力
○ SkyLine ○ SMS-AMG ◎ MRTR 反復回数 1000 収束判定値 1E-8	モデル mu-MF.3ct. 64bit_translent
O m O micron	
コイル要素による空間要素の磁場算出位置 ● 要素重心のみを設定 ○ 要素重心+ Gauss点を設定 	Z Y X 表示するプロパティル 101 ▼
履歴 125546 PM08/24/22 *** Step 2 村村と励磁を決める *** 01:06:39 PM08/24/22 *** Step 2 村村と励磁を決める *** 01:12:08 PM08/24/22 *** Step 3 励磁の値を入力 *** 01:12:08 PM08/24/22 *** Step 4 現界条件を決める *** 01:12:08 PM08/24/22 *** Step 4 現界条件を決める *** 01:12:32 PM08/24/22 *** Step 5 その他解析条件の設定 ***	XY ZX YZ 人 と ● 田 <<前に戻る

3.5 解析データの出力

3.6 計算実行

4 結果ファイルのエキスポート

4.1 Femapファイルのエキスポートの場合

結果表示モジュール Femap をチェックして、参照ボタンでファイル名を指定し、書き出します

● 一 ●	– 🗆 X
ファイル 解析条件 ツール ヘルプ	
Step 8 実行結果をモデルに反映させる	設定状況
ファイルフォーマット選択	✓ Sten 1 モデル情報を取け込む:
Femap (*.neu)	 ✓ Step 2 材料と励磁を決める
元となる形状ファイル msc1neu 参照	✓ Step 3 励磁の値を入力
※FemapまたはAirCube指定時は必須	✓ Step 4 境界条件を決める
O I-DEAS (*.unp) O Paraview (*.vtk) O AirCube (*.tsl)	 ✓ Step 5 その他解析条件の設定 ✓ Step 6 設定 た条件をファイル出力
出力ファイル名 msclpneu (保存))	 ✓ Step 7 解析の実行
☑ モデル全体(出力ファイル名)	 Step 8 実行結果をモデル出力
□ ブロバティグループ(出力ファイル名+p(ID))	T =""
作成したグループリスト 出力するグループ	HTTL
プロパティグループの作成	
□ 範囲分割グループ(出力ファイル名+a(ID))	
作成したグループリスト 出力するグループ	Z Y X X
領域分割グループの作成	まテオるゴロバティID 101
書き出し	
履歴 01:14:10 PM08/24/22 *** Step 6 設定した条件をファイル出力 **** 01:14:39 PM08/24/22 解析・形状ファイルを確認します 01:14:39 PM08/24/22 *** Step 7 解析の実行 *** 01:14:42 PM08/24/22 解析表行開始	XY ZX YZ 🙏 💺 📭 🖽
UD:114:01 FMU02/422 FMPが研究178/1 D1:15:12 PM08/24/22 #*** Step 8 実行結果をモデルに反映させる **** 01:15:12 PM08/24/22 **** Step 8 実行結果をモデルに反映させる ****	<< 前に戻る (次に進む >>

msc1p.neuのファイルが結果ファイルになります

4.2 MFGUI ファイルのエキスポートの場合 計算が終了すると、自動的に msc1.pst ファイルが出力されます 5 MFGUI の結果表示

MFGUI 起動 ボタンで表示が始まります

5.1アウトプットファイルの読込み

Example13- Magnetic field analysis using coil elements

